
IAT 445 – Lab 10

Special Topics in Unity

© Lanz Singbeil

Special Topics in Unity
We’ll be briefly going over the following concepts. They
are covered in more detail in your Watkins textbook:

• Setting up Fog Effects and a Sky Box

• Using Prefabs in useful ways

• Using the Unity Animation Editor

• Using Trigger Volumes

• Using script to switch scenes

• Using script to play sounds

• Using script to control animation

© Lanz Singbeil

Special Topics in Unity
Unity refresher:

Start by opening the Unity_Lab10 project.

Setting your Project in Unity is a bit different than in Maya.

If Unity is already running go to File > Open Project.

Or, if you have no project set, then select the project in the little
project selection screen.

After setting your project double click the
“SmallBayScene” scene file in the project tab.

© Lanz Singbeil

Special Topics in Unity
There is a folder called Maya_Exports that contains
some FBX objects.

Bring those into your Unity project and place them in a
folder called “meshes”

 (Put them in the assets folder)

We will use these meshes later.

© Lanz Singbeil

Special Topics in Unity
Giving your scene a nicer look: Add Fog and a Skybox

A Skybox is a background material that is rendered before the rest of the scene:
http://docs.unity3d.com/Documentation/Components/class-Skybox.html

Fog is a rendering effect that produces a “hazy” appearance for distant objects.

For this tutorial we will use a skybox that Unity has already made. To do that:

Assets > Import Package > Skyboxes

It will open a window where you can choose to import certain files or import
all. If you know your scene isn’t going to be at night you could de-select the
night-time materials and textures. Otherwise, just press Import.

© Lanz Singbeil

http://docs.unity3d.com/Documentation/Components/class-Skybox.html
http://docs.unity3d.com/Documentation/Components/class-Skybox.html
http://docs.unity3d.com/Documentation/Components/class-Skybox.html
http://docs.unity3d.com/Documentation/Components/class-Skybox.html

Giving your scene a nicer look: Add Fog and a Skybox

Next, Go to Edit > Render Settings…

In the inspector tab, a set of options will appear. Adjust your settings as you see here:

You can adjust the settings as much as you like or choose a different skybox material.

© Lanz Singbeil

Giving your scene a nicer look: Add Fog and a Skybox

The changes should become immediately visible in your scene

© Lanz Singbeil

Using Prefabs in useful ways
A Prefab is a reusable GameObject stored in Project View.

We can use prefabs as a way to quickly build a complex object and to update
instances of the same object all at once.

This is similar to using instances or referencing in Maya: We have 1 main
object that the others are instances of. If we make changes to the main one,
the others will update.

Let’s make an example: Perhaps in our game we want to have “gateways”
that take us to different scenes. If each scene has a gateway that looks the
same or similar, it makes sense that we only make this asset once.

 For now we will just make the prefab of a static gateway but we can
 later give it code to do the actual teleporting.

© Lanz Singbeil

Using Prefabs in useful ways
Making a Gateway prefab:

Make sure the GateRock mesh is imported. Next create 3 instances of the
mesh so that they are laid out like you see here:

Each mesh should have a Box Collider component.

The two legs should be parented to the top (drag their names in the hierarchy
onto the name of the top one).

© Lanz Singbeil

Using Prefabs in useful ways
Making a Gateway prefab:

In your project view, create a new folder called “prefabs”

Then, with that folder selected, create a new prefab and name it
“Gateway”
 Create > Prefab

The last step is to drag the gateway object from our scene view
onto that prefab.

To test the connection, select your prefab and toggle off/on the
mesh renderer. The instance in the scene should turn itself off.

Make copies of the gateway and see how it still responds to
changes from the prefab.

Later we’ll add code to it but right now that’s it.

© Lanz Singbeil

The Unity Animation Editor
Unity handles animation in a nice and simple way. Let’s start by opening the
animation editor:

Window > Animation

© Lanz Singbeil

The Unity Animation Editor
Create a new particle system and we will make it fly around the scene:

Game Object > Create Other > Particle System

(Place it somewhere in the scene)

With that object selected the animation editor will now display its key-able
attributes.

Next, click the empty space beside the name of the object in the editor and
choose [Create New Clip]

© Lanz Singbeil

The Unity Animation Editor
Save the clip as something like “FlyingParticleAnim”

Before we can add keyframes we need to select the attributes we want to
animate. Hold shift and select the X, Y, and Z position. These are all that are
necessary to make it move around.

© Lanz Singbeil

The Unity Animation Editor
Next click on some part of the timeline (the upper region of the animation
window with the numbers).

We can then move our object to add a keyframe at the position where we let
go. Then move the time index and move your object again to add more
keyframes. You can also adjust the interpolation curves directly.

clip as something

© Lanz Singbeil

The Unity Animation Editor
Making Animation Loop

When you are done animating, press the record button to turn off the
animator. Then close the window and press play.

The animation will play! …Once

So we need to make it loop. One approach is to use code. controlling
animation with code is a great way to add unique behaviour in your
environment.

However, if you want a quick approach you can set it to ALWAYS loop.

© Lanz Singbeil

The Unity Animation Editor
Making Animation Loop

Find the animation clip in your
project tab and select it.

In the inspector you can
change the Wrap Mode setting
to Loop or PingPong to have a
looping animation.

© Lanz Singbeil

Using Trigger Volumes
Suppose we want our character to die if he comes into contact with a certain
thing or falls into a pit of doom or maybe we want the scene to transition if
they enter a certain area?

First lets make the character die (and have the scene restart):

I created a crazy vine with lots of thorns on it. We will use it to kill our
character.

To bring the FBX into unity, copy it from its location in the “Maya Exports”
folder and paste it into the “Assets” folder of our Unity Project.

Note: The most important thing when we are doing level design for a game is
to make sure things aren’t arbitrary and random. A vine will sort-of work in
this scene but for your project you will want something else.

© Lanz Singbeil

Using Trigger Volumes
Making the character die (and have the scene restart):

Now that the mesh is in our Assets folder, it should show up in the project tab.

Next lets drag it into the scene. It will be really small so we need to scale it up.

I placed it near the character because then I can test it out without having to walk far.

After we get everything
set up we can make it
into a prefab and then
position a bunch of
them anywhere we want
in the scene.

© Lanz Singbeil

Using Trigger Volumes
Making the character die (and have the scene restart):

 Next we need to create a region where,
if the character enters it, they die.

To do that we will use a trigger
volume.

Create a cube and scale it to a bit larger
than the vine. Then have it overlap the
vine.

Name it “KillVolume”

© Lanz Singbeil

Using Trigger Volumes
Making the character die (and have the scene restart):

With the cube selected, look in
the inspector and you should
see:

An “Is Trigger” checkbox.
 Check this box.

(if you can’t see it right away
you may need to expand the
“box collider” component by
clicking on it)

There is also a “Mesh Renderer”
checkbox.
 Uncheck this box

© Lanz Singbeil

Using Trigger Volumes
Making the character die (and have the scene restart):

What we’ve done is pretty much made the box do nothing. You can’t see it and
you can’t bump into it.

Aside: if you wanted to make invisible walls, you would only uncheck the Mesh
Renderer component and keep the other checkboxes untouched.

Now we are ready to add code.

About coding in Unity:

Unity uses either C# or Javascript when coding. The textbook uses javascript.

Because I am more of a programmer I will be using C# which I find is pretty
straightforward and nice to code in.

© Lanz Singbeil

Using Trigger Volumes
Making the character die (and have the scene restart):

In the project tab there is an empty folder called “Scripts”

Right click the folder and go:
Create > C# Script

This will add the script to the folder.
Name it “KillPlayer”

Note about renaming in C#:
When you first create the script you have an option to name it. If you choose to
rename it later you will need to also give it a matching name in the code or it will
produce an error.

© Lanz Singbeil

Using Trigger Volumes
Making the character die (and have the scene restart):

How do Scripts Work?

Scripts work in Unity by adding them to an object as a new component.
This is a very flexible system which allows an object to have a variety of
different scripts or many objects to have the same script.

For example: If you select the Player object you will see, in the inspector, that it has 3 script
components: Mouse Look, Character Motor, and FPSInput Controller.

To add a script as a component to an object, simply drag that script onto
the object (or onto the object’s name in the hierarchy tab or into a blank
space in the inspector view for that object).

 Add the KillPlayer script to the KillVolume.

© Lanz Singbeil

Using Trigger Volumes
Making the character die (and have the scene restart):

Editing a Script:

Double click the KillPlayer script and the default editor will open it:

Depending on your settings it will either open Visual Studio, MonoDevelop, or the
Unity built-in Editor.

I’ll be using MonoDevelop. It is usually installed with Unity. I’ve found it to be
fairly easy to use.

You can change your default editor by going:

Edit > Preferences > External Tools ,
 and then find the “External Script Editor” option

© Lanz Singbeil

Using Trigger Volumes
Making the character die (and have the scene restart):

Looking At Code:

using UnityEngine;
using System.Collections;

public class KillPlayer : MonoBehaviour {

 // Use this for initialization
 void Start () {

 }

 // Update is called once per frame
 void Update () {

 }
}

When you create a script, Unity generates
the following:

Basic unity imports required for any Unity
script.

Class name. (must be same as file name)

Start method is called once when the
scene starts. Use this or OnAwake() to
initialize variables once at start.

Update method is called once every
frame. Logic checks and special behavior
often goes here.

© Lanz Singbeil

Using Trigger Volumes
Making the character die (and have the scene restart):

For this particular script, we don’t need to work with the start or update methods.
Instead, lets create a new method by adding the following lines of code before the
last closing bracket:

 void OnTriggerEnter(Collider c) {

 }

What this will do is listen for times when something enters the trigger volume. This
works because we turned “Is Trigger” on in the Kill Volume’s Box Collider component.

Whenever a collideable object enters this trigger volume, it will “trigger” this
method. Now all we have to do is put unique functionality in the body of the method.

© Lanz Singbeil

Using Trigger Volumes
Making the character die (and have the scene restart):

We want to restart the game. To do that, we tell the game to load the current scene
again. The following code allows you to put the restart in any level and it would
restart from the beginning of that level rather than the first level of the game.

 void OnTriggerEnter(Collider c) {

 Application.LoadLevel(Application.loadedLevel);

 }

Just like in Java, make sure you add a semi-colon at the end of the line.

“Application” is a globally accessible class (Static) that contains information about the
game in general. We call the LoadLevel method in the Application class and pass the
currently loaded level as a parameter.

© Lanz Singbeil

Using Trigger Volumes
Making the character die (and have the scene restart):

SAVE YOUR CODE

Press the save button. In most scripting applications it is located at the top left.
If you don’t save your code, the game will not contain any new functionality.

After saving you can go back to Unity and test the game.
If there are any syntax Errors Unity will tell you in red at the bottom of the screen.

When you run the game, what should happen is that, when you walk close enough to
the spikey vine, the scene will restart.

© Lanz Singbeil

Using Trigger Volumes
Making the character die (and have the scene restart):

Now parent the KillVolume to the Vine.

Then, create a prefab from the vine. If we want to make changes it will change all
instances of the prefab. And now we can make a lot of copies of it and scale
them/rotate them and not worry about affecting the original!

© Lanz Singbeil

Using script to switch scenes

Remember that we created a gateway object before? Let us use it to teleport
to a new level.

First lets make a scene to teleport to: File > New Scene

make a simple scene with a similar set-up to first one. Have a character controller and a
simple ground plane.

Make sure to save your new scene.

© Lanz Singbeil

Using script to switch scenes

Now lets go back to our original scene. We need to do a few steps:

Create a cube and name it “Teleport” scale it so that it fits into the arch.

Now parent the Teleport to the gateway (drag its name onto the gateway
name).

© Lanz Singbeil

Using script to switch scenes

Lastly, drag this new gateway with the teleporter in it onto the old prefab in
the project tab.

This will update the prefab. Any other instances of gateway will now also have
this new teleporter.

© Lanz Singbeil

Using script to switch scenes

Now we need to add the logic:

1. Create a new script called “SwitchScenes”

2. Drag that script onto the teleporter object in the prefab.

3. Make sure The teleporter has mesh renderer turned off and “Is Trigger”
turned on.

4. In the script, add the following code similar to before:

 void OnTriggerEnter(Collider c) {

 Application.LoadLevel(“NAME_OF_LEVEL”);

 }

© Lanz Singbeil

Using script to switch scenes
Test the game!

If you did the steps correctly, Unity should throw an error when you try to
teleport:

You may already know how to fix this. We just need to go into our build
settings and add all our different scenes. We are going to have to do that
anyways if we want to export the game.

File > Build Settings

 Then open each scene and press “Add Current”

Test again and it should work.

© Lanz Singbeil

Using script to play sounds

Option 1: Have an audio source on your object with an audio clip. Trigger the audio source
component on the object. Supports only 1 clip per object.

 void OnTriggerEnter(Collider c)

 {

 audio.play();

 }

Option 2: use an empty audio source and play a clip stored in a variable of the script
(supports multiple audio clips) http://answers.unity3d.com/questions/12546/playing-audio-clip.html

 public AudioClip pickup; // public variables can be assigned in the inspector

 void OnTriggerEnter(Collider c)

 {

 AudioSource.PlayClipAtPoint(pickup, transform.position);

 }

© Lanz Singbeil

http://answers.unity3d.com/questions/12546/playing-audio-clip.html
http://answers.unity3d.com/questions/12546/playing-audio-clip.html
http://answers.unity3d.com/questions/12546/playing-audio-clip.html
http://answers.unity3d.com/questions/12546/playing-audio-clip.html
http://answers.unity3d.com/questions/12546/playing-audio-clip.html
http://answers.unity3d.com/questions/12546/playing-audio-clip.html

Using script to loop animations:

Going back to our particle system, it only plays once.

Maybe we want to be able to trigger an animation at a certain time or to have it
always be playing.

For looping an animation, create a new script and add it to your particle system.

In the update method insert the following code:

 // Update is called once per frame

 void Update () {

 if (animation.isPlaying == false)

 {

 animation.Play();

 }

 }

© Lanz Singbeil

If time permits:

Questions? Requests?

© Lanz Singbeil

